

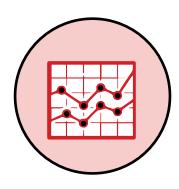
Clinical Relevance of Recent Insights in Hypoglycaemia

Bastiaan de Galan

Department of internal medicine Subdivision endocrinology Maastricht UMC+ Maastricht The Netherlands Department of internal medicine Radboud university medical centre Nijmegen The Netherlands

Radboudumc

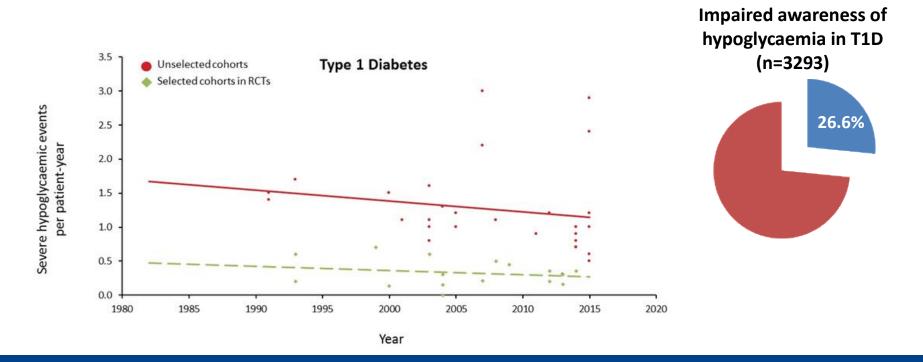
DUTCH DIABETES ACADEMY 1-12-2020



DISCLOSURES 2020 BASTIAAN DE GALAN

Voor bijeenkomst mogelijk relevante relaties:	Bedrijfsnamen
Sponsoring of onderzoeksgeld	 Novo Nordisk
Honorarium of andere (financiële) vergoeding	• Nee
Aandeelhouder	• Nee
Andere relatie, namelijk	Nee

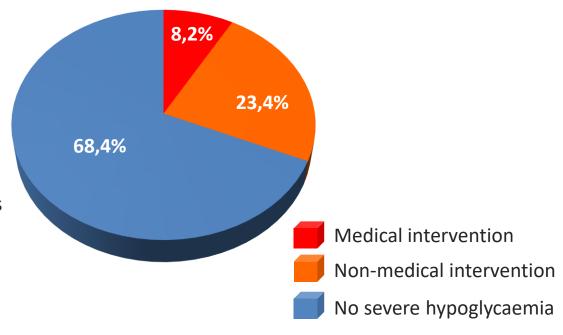
Why Hypoglycaemia Matters



Hypoglycaemia remains a common and inevitable risk of insulin (release enhancing) therapy Hypoglycaemia is an under-recognized problem that deserves increased awareness Fear and avoidance of hypoglycaemia may impair good glucose control There is a lack of understanding by both professionals and patients

A better understanding can reduce its frequency and improve patient quality of life

Severe Hypoglycaemia (and IAH) in Type 1 Diabetes


Severe Hypoglycaemia in Type 2 Diabetes

Severe hypoglycaemia in the past year

Dutch Diabetes Pearl Cohort

- 7 Centres across the Netherlands
- 2350 People with type 2 diabetes on ≥1 dose of insulin
 - Basal only: 478 (20.3%)
 - Premixed: 423 (18.0%)
 - Basal-bolus: 1446 (61.5%)

Impaired awareness of hypoglycaemia in Type 2 Diabetes (n=2350) the Dutch Diabetes Pearl Cohort

Symptoms of hypoglycaemia that can be misinterpreted in the elderly:

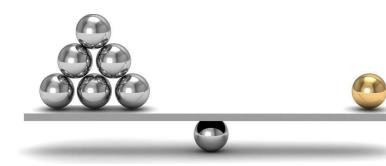
- Light-headedness (heart failure, hypotension)
- Weakness, fatique (age, adverse drug effect)
- Unsteadiness (neurological condition)

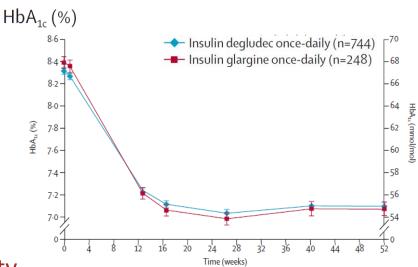
Zammitt & Frier, Diabetes Care 2005;28:2948-61

van Meijel et al., BMJ Open Diabetes Res Care 2020

Treatment Options to Reduce the Risk of Hypoglycaemia

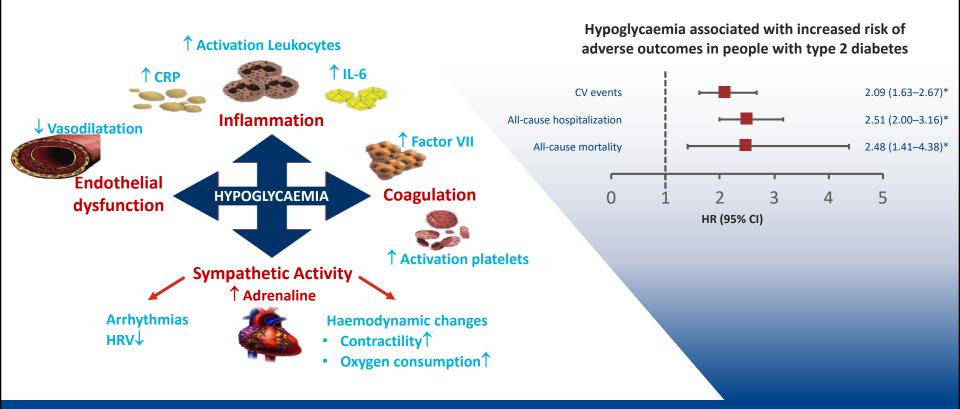
Insulin therapy


Technology



Treat-to-target in (clinical) trials

Basal insulins were systematically titrated with a treat-to-target approach to a self-measured plasma glucose concentration (SMPG) before breakfast of $3\cdot 9$ –< $5\cdot 0$ mmol/L (see appendix for details). On the


The primary endpoint was change from baseline in HbA_{1c} concentration after 52 weeks of treatment.

- Treat-to-target: HbA1c non-inferiority
- Hypoglycaemia as outcome parameter?

Adverse Effects of Hypoglycaemia

How to Define Hypoglycaemia?

Whipple's Triad

Low blood glucose level

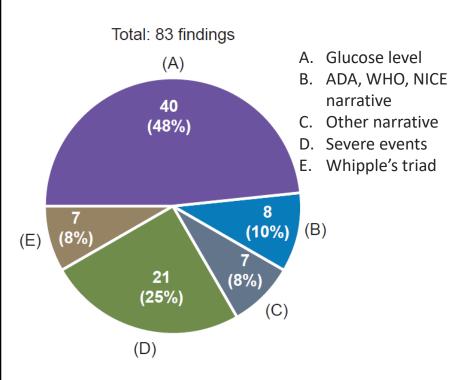
Symptoms consistent with hypoglycaemia

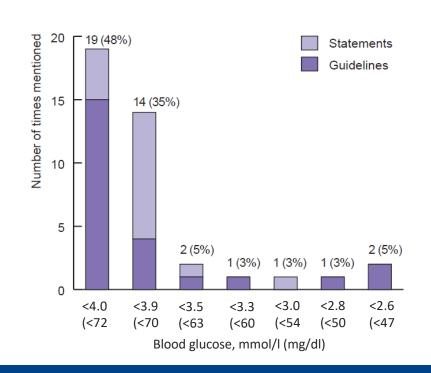
Relief of symptoms when the glucose level is raised

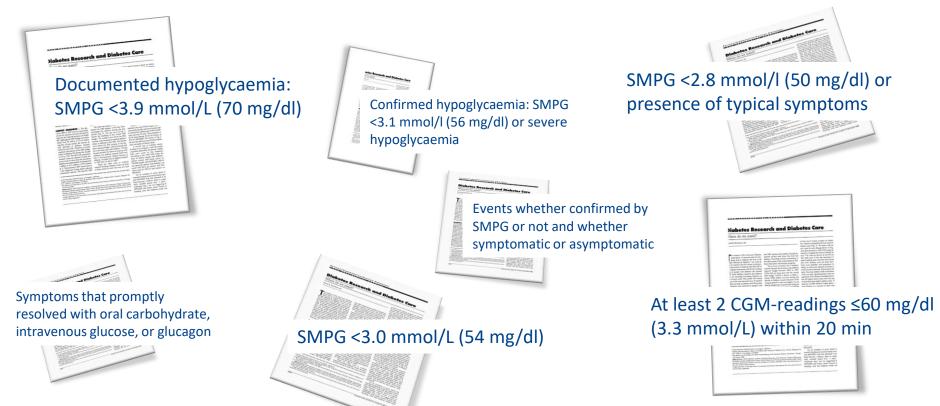
Unresolved issues

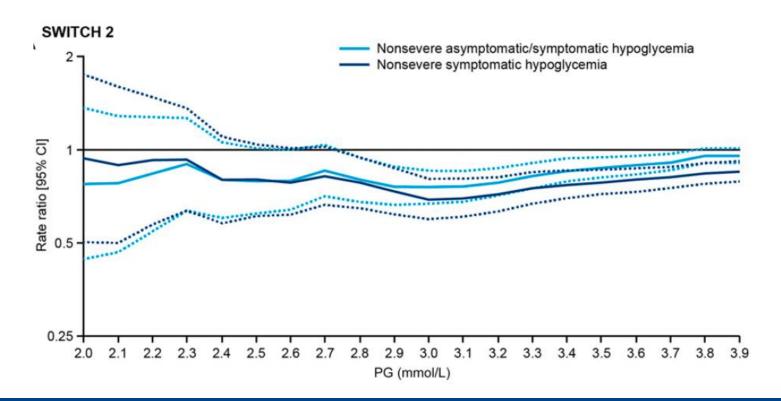
- Which glucose cut-off to use?
- Where to measure?
 - Capillary blood (conventional)
 - Interstitial fluid (CGM)
- Which symptoms are typical?
- Asymptomatic events and impaired awareness?
- Clinical relevance?
 - Physical harm
 - Decreased QoL
 - Increased costs

Hypoglycaemia Narrative Definitions




- NICE: "... level of blood glucose at which physiological and neurological dysfunction begins..."


Hypoglycaemia Definitions in Guidelines and Statements



Hypoglycaemia Definitions in Trials

Impact of Glucose Cut-offs to Define Hypoglycaemia

Hypoglycaemia in Clinical Trials

- Using different cut-offs invalidates comparing glucose-lowering strategies
- Non-severe events are usually not adjudicated and rate depend on mode and frequency of monitoring
- Clinical relevance of too high a glucose cut-off is questionable
- Severe hypoglycaemia is relatively rare
- There is a need for a level between these two 'extremes'

IHSG Classification of Hypoglycaemia

Proposed classification for reporting hypoglycaemia in clinical trials

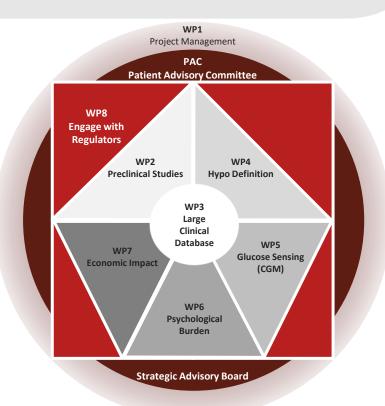
≤3.9 mmol/l (70 mg/dl) Level Alert value <3.0 mmol/l (54 mg/dl) Level **Clinically important** Cognitive decline requiring external help

Severe hypoglycaemia

Level

The Hypo-RESOLVE Project

Overall objective

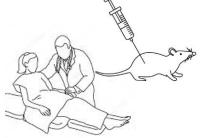

To reduce the burden of hypoglycaemia among patients with diabetes through better understanding (predictors, underlying mechanisms, consequences), using a comprehensive multilevel approach

05/2018-04/2022

Public-private partnership

involving 22 partners from academia, industry and patient organisations

Activity in Hypo-RESOLVE



Database Analyses

Predictors and consequences of hypoglycaemia

Preclinical Studies

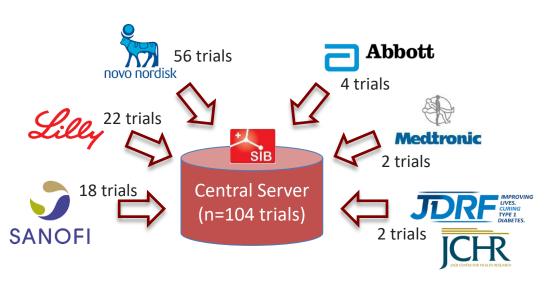
Inflammation, cardiac/cognitive function and epigenetics

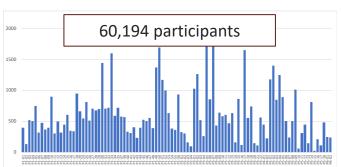
Hypo-METRICS

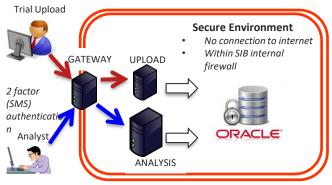
Relevance of CGMdetected Low Interstitial Glucose (LIG)

Quality of Life and Health Economics

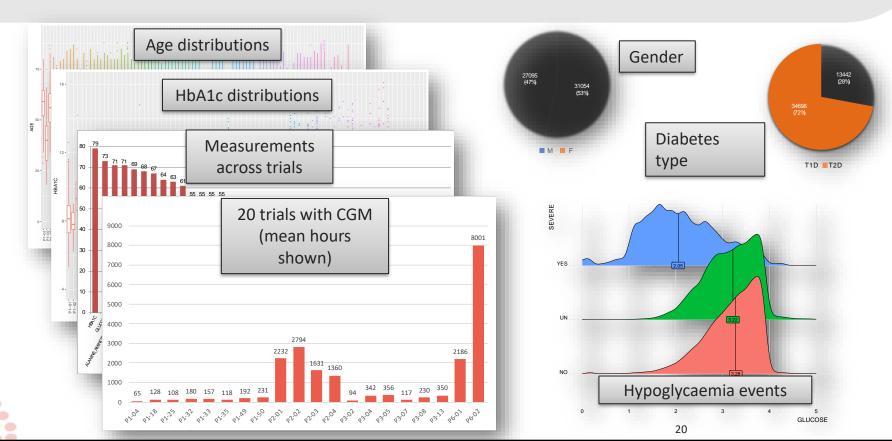
Patient-Reported Outcomes (PROs) and Costs


Robust evidence base to refine and solidify the classification of hypoglycaemia in diabetes



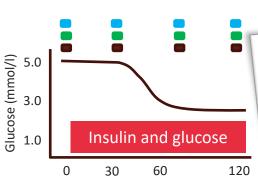

Construction of Hypo-RESOLVE Database

- Secure transfer through a private (VPN) connection
- Central server is protected behind a firewall



The Hypo-RESOLVE database

Hyperinsulinaemic hypoglycaemic clamp study



Participants (n=16 each)

- T1D, aware
- T1D, impaired aware
- T1D, poor glucose control
- T2D, insulin treated
- Control groups w/out diabetes

Hypoglycaemic Clamp

Blood sampling

Symptom questionnaire

Time (min)

Follow-up (days 1, 3, 7)

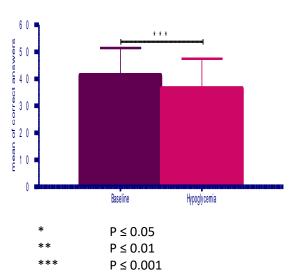
Measurements

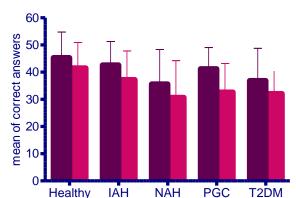
EDTA blood: Genome Transcriptome Metabolome Circulating Mediators Immunophenotyping

PBMC's: Urine Cytokines

Immunophenotyping

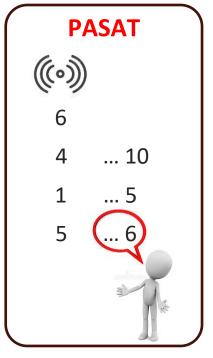
Hyperinsulinaemic hypoglycaemic clamp study

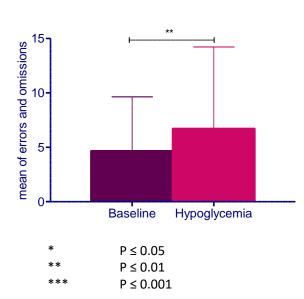

Baseline characteristics

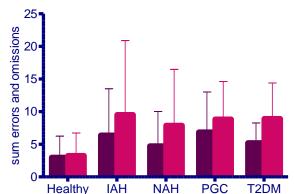

	Type 1 diabetes					
	Healthy subjects	Poor glucose control	Normal awareness	Impaired awareness	Type 2 diabetes	Total
N (male/female)	26 (11/15)	6 (5/1)	14 (6/8)	14 (8/6)	10 (8/2)	70 (38/32)
Age (years)	47.0 ± 19.8	48.2 ± 22.0	37.4 ± 21.2	54.7 ± 13.6	62.9 ± 5.9	49.1 ± 19.1
BMI (kg/m²)	23.5 ± 3.3	27.9 ± 4.6	25.6 ± 3.2	26.2 ± 3.9	28.9 ± 3.3	25.6 ± 4.0
Duration diabetes (years)	NA	26.0 ± 11.9	17.0 ± 16.7	24.3 ± 11.6	16.5 ± 8.6	20.4 ± 13.2
HbA1c (mmol/mol)	34.5 ± 3.5	69.7 ± 2.9	54.9 ± 6.4	59.0 ± 9.1	67.4 ± 8.7	NA

Data are shown as number or mean ± SD. NA: not applicable

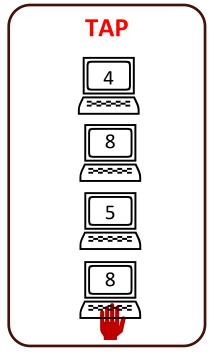
Verhulst et al. Unpublished Radboudumc

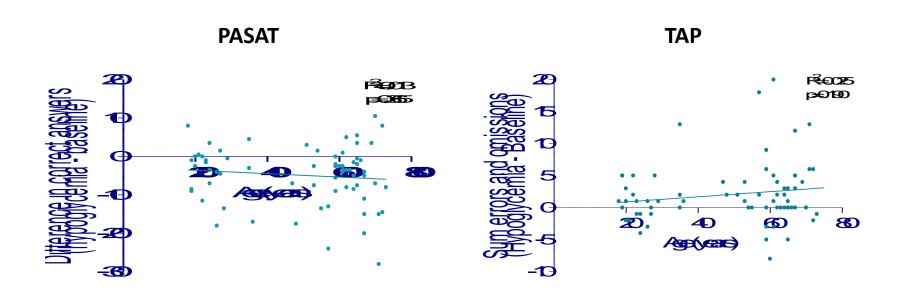

Effect of hypoglycaemia on cognitive function: *PASAT*


IAH: impaired awareness of hypoglycemia (T1DM) NAH: normal awareness of hypoglycemia (T1DM)


PGC: poor glycemic control T2DM: type 2 diabetes

Verhulst et al. Unpublished Radboudumc

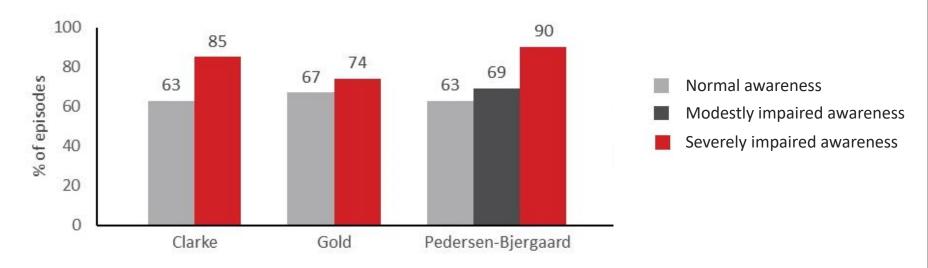

Effect of hypoglycaemia on cognitive function: *TAP*


IAH: impaired awareness of hypoglycemia (T1DM) NAH: normal awareness of hypoglycemia (T1DM)

PGC: poor glycemic control T2DM: type 2 diabetes

Verhulst et al. Unpublished

Hypoglycaemia-related cognitive dysfunction: No effect of age

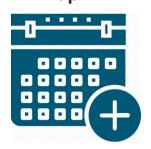



Verhulst et al. Unpublished Radboudumc

Asymptomatic Hypoglycaemia by CGM

Over sixty per cent of all CGM-recorded hypoglycaemia episodes lack warning symptoms, even in people with diabetes and intact awareness

Hypo-Metrics Study: Design


HYPOglycaemia MEasurement ThResholds for Interstitial glucose reCordingS

Participants (n=600)

Duration of followup

10 weeks

Blinded glucose

sensor

Activity Tracking Ecological Momentary Assessments

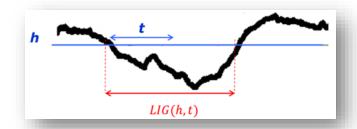
- Sleep vs awake
- Activity
 - Sleep quality

- Patient-reported outcomes
- Sleep quality (self report)
- Hypoglycaemia reporting

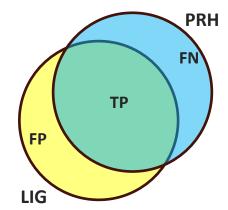
T1D, impaired aware (n=50)

T2D, ≥2 injections/day (n=350)

8 centres in 5 countries


Hypo-Metrics Multi-Centre Study (WP5)

HYPOglycaemia MEasurement ThResholds for Interstitial glucose reCordingS

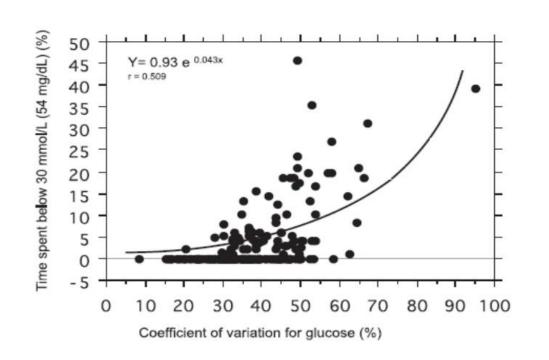


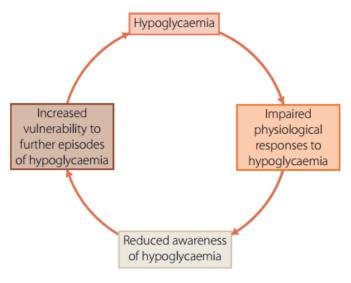
Objective: To determine the optimum parameters of low interstitial glucose (LIG) that best correlate with patient-reported hypoglycemia

(PRH): $LIG_{PRH}(h_{opt}, t_{opt})$

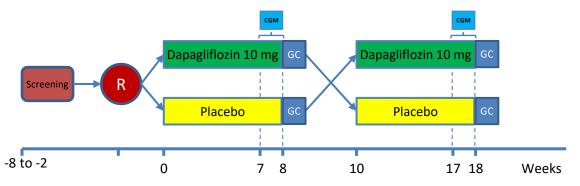
h: threshold glucose valuet: time under threshold value

FP: false positive (asymptomatic LIG)


FN: false negative (CGM-missed)


TP: true positive

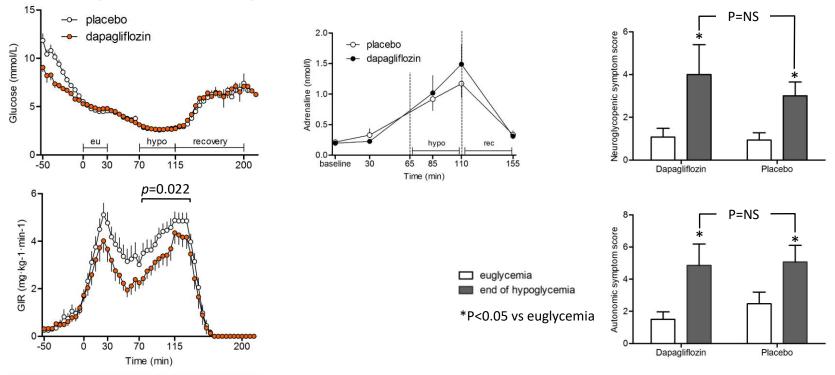
Glucose variability predicts hypoglycaemia (and IAH?)



Effect of dapagliflozin in T1D with IAH

- N=15
- Type 1 diabetes >1 yr
- Age 18-75 yrs
- HbA1c 42-75 mmol/mol (6-9%)
- Modified Clarke score ≥3
- Exclusion: history of cardiovascular disease, ketoacidosis

- Dapagliflozin 10 mg QD vs. matched placebo for 8 weeks
- Continuous blinded glucose monitoring in final week
- Hyperinsulinaemic hypoglycaemic glucose clamp on final day


Effect on glucose metrics and body weight

	Dapagliflozin	Placebo	P-value
Change in HbA1c, mmol/mol	-4.1 ± 0.9	2.3 ± 1.4	0.004
Total no. of hypos (in 8 weeks)	7.0 (3.0, 19.0)	8.0 (2.0, 11.0)	0.70
Mean glucose (mmol/L)	7.6 ± 0.3	8.2 ± 0.4	0.075
Glucose variability, SD (mmol/L)	2.6 ± 0.2	3.1 ± 0.3	0.029
Time in range, %	72.9 ± 3.3	68.0 ± 4.2	0.19
Change in body weight, kg	-2.3 ± 0.6	-0.1 ± 0.5	0.033
Data are presented as mean ± SE or median (IQR)			

Van Meijel et al. 2020. Submitted

Radboudumc

Hypoglycemic glucose clamps

Van Meijel et al. 2020. Submitted Radboudumc

Interim conclusion

- Adjunctive treatment with the SGLT-2 inhibitor dapagliflozin improves glucose variability and some components of impaired awareness of hypoglycaemia, but does not restore awareness in people with type 1 diabetes
- Yet, the (unsought) reduction in HbA1c combined with very low burden of hypoglycaemia supports the exploration of a role for SGLT-2 inhibitors in the clinical management of impaired awareness of hypoglycaemia

Take-home messages

- Hypoglycaemia remains an unmet medical need for people with diabetes
- Definitions of hypoglycaemia vary greatly among guidelines, reflecting lack of sufficient evidence
- Hypo-RESOLVE aims to increase the understanding of hypoglycaemia and to provide an evidence-based classification of hypoglycaemia
- Preliminary data on cognitive decline during hypoglycaemia support the IHSG proposed classification of hypoglycaemia
- Results from Hypo-RESOLVE are expected to inform trial design and daily clinical practice

Thank you for your attention!

